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SUMMARY 

A new numerical method for solving the axisymmetric unsteady incompressible Navier-Stokes equations using 
vorticity-velocity variables and a staggered grid is presented. The solution is advanced in time with an explicit 
two-stage Runge-Kutta method. At each stage a vector Poisson equation for velocity is solved. Some important 
aspects of staggering of the variable location, divergence-free correction to the velocity field by means of a 
suitably chosen scalar potential and numerical treatment of the vorticity boundary condition are examined. The 
axisymmetric spherical Couette flow between two concentric differentially rotating spheres is computed as an 
initial value problem. Comparison of the computational results using a staggered grid with those using a non- 
staggered grid shows that the staggered grid is superior to the non-staggered grid. The computed scenario of the 
transition from zero-vortex to two-vortex flow at moderate Reynolds number agrees with that simulated using a 
pseudospectral method, thus validating the temporal accuracy of our method. 

KEY WORDS: unsteady incompressible flow; vorticity-velocity formulation; numerical simulation; staggered grid; spherical 
Couette flow 

1. INTRODUCTION 

In the numerical simulation of incompressible flows the appropriate mathematical formulation of the 
Navier-Stokes ( N - S )  equations may be advantageous if the choice is according to the problem domain 
and boundary conditions. Two distinctly different formulations have been utilized in the literature. In 
the first formulation the momentum equation, which contains both velocity and pressure, is solved 
numerically with a derived Poisson equation for pressure (i.e. pressure-velocity or primitive variable 
formulation'). The second formulation is based on eliminating the pressure from the momentum 
equation by application of the curl operator; in this manner a vorticity transport equation is solved in 
lieu of the momentum equation (vorticity-velocity formula t i~n~~~) .  As demonstrated in Reference 4, 
the vorticity-velocity ( e u )  formulation has a striking advantage over the other when applied to 
problems in a non-inertial frame of reference, because the non-inertial effects only enter into the 
solution of the problem through the implementation of initial and boundary conditions. Another 
advantage of the e u  formulation may be the easier implementation of the vorticity boundary 
condition than that of the pressure boundary condition. Moreover, the vorticity is calculated directly 
and is convenient in characterizing certain features of the flow. 

The idea of using an e u  formulation itself is not new. In Reference 2 the m-u form was used for 
calculating steady incompressible flows in three dimensions. The formulation was also applied to solve 
unsteady two-dimensional and three-dimensional flow.7 Generally the vorticity was obtained 
from the vorticity transport equation and the velocity from the Poisson equation or directly from 
Cauchy-Riemann equations composed of the continuity equation and vorticity definiti~n.~ 
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In the present paper a numerical method in terms of the vorticity-velocity for solving the 
axisymmetric unsteady incompressible N-S equations is developed. The three vorticity transport 
equations and three Poisson equations for velocity components are retained as in general 3D flows. The 
solenoidality constraints of the velocity and vorticity fields require a coupled solution between the 
vorticity transport equations and the velocity Poisson equations. Unfortunately, the number of 
unknowns and the presence of the non-linear advective-stretching terms prohibit the use of a direct 
solver; thus iterative methods were often The solution for an unsteady flow might be very 
time-consuming, since many iterations are needed at each physical time step. Furthermore, even with 
the coupling between the dynamic and kinematic features the solenoidality constraints of the velocity 
and vorticity fields are not necessarily satisfied, owing to other sources such as errors in the 
discretization or improper treatment of the vorticity boundary condition. 

There are two types of approach to deal with the solenoidality problem in the past literature. In the 
first approach the solenoidal components were obtained by solving a Poisson equation for a suitably 
chosen scalar p~ten t ia l .~’~  In the second approach a staggered grid was adopted.’ The present method 
incorporates the merits of References 7-9 in two ways: first, the variables are located on a staggered 
grid and a conservative form of the vorticity transport equations is adopted in order to satisfy the 
solenoidality constraint of the velocity and vorticity fields on individual cells; second, the velocity field 
is projected onto a solenoidal component by using Helmholtz decomposition in order to reduce the 
deviation from the solenoidal field. However, the present method differs from previous ones mainly in 
two features: (i) the numerical scheme to integrate the vorticity transport equations in time is an 
explicit two-stage Runge-Kutta method and the Poisson equations for velocity components are solved 
by an SOR method instead of an AD1 method (which might involve solving a block matrix equation in 
non-Cartesian co-ordinates); (ii) the velocity field is projected onto a solenoidal component by using a 
suitably chosen scalar potential at each stage in each physical time step. 

An explicit time integration method appears to be more efficient than implicit methods. The reasons 
why we use a two-stage instead of a higher-stage Runge-Kutta algorithm are that its accuracy is 
consistent with second-order spatial accuracy and that our case is a moderate-Reynolds-number and 
low-wave-number flow. The correction to the velocity field by Helmholtz decomposition helps in 
satisfying better the divergence-free constraint at each physical time level. Although the proposed 
method does not include iteration between the vorticity transport equations and the Poisson equations, 
it is still at least first-order temporally accurate and the computed results agree with those of high- 
resolution simulation using a second-order temporally accurate pseudospectral method. lo 

In Section 2 the differential formulation of the problem and a solution procedure are presented. 
Section 3 describes the discretization of the equations and vorticity boundary condition. In Section 4 
the method is applied to a test problem of spherical Couette flow at Re = 800 with a gap ratio CT = 0.18. 
Comparison with other numerical” and experimental results” is also presented. 

2. VORTICITY-VELOCITY FORMULATION OF N-S EQUATIONS AND SOLUTION 
PROCEDURE 

2. I .  Mathematical formulation 

incompressible Newtonian fluid can be written in the conservative form’ 
The non-dimensional vorticity-velocity form of the Navier-Stokes equations for laminar flow of an 

am 1 
at Re 
- = v x ( u x m ) + - v ~ w ,  

v2u = -v x 0. (2) 



AXISYMMETRIC UNSTEADY INCOMPRESSIBLE FLOW 403 

Here u = u(x, t)  and w = w(x, t )  are the velocity and vorticity fields respectively, x is a point, t is time 
and Re= UrefL,h, where Uref is the reference velocity, L,f is the reference length and v is the 
kinematic viscosity. 

The vorticity transport equation (1) is derived by applying the curl operator to the momentum 
equations, whose advective term is written in Lagrange form. The velocity Poisson equation (2) results 
from taking the curl operator of the vorticity definition and using the continuity equation. We denote 
V * as a Laplacian operator in Cartesian co-ordinates but not in cylindrical or spherical co-ordinates. 

Equations (1) and (2) must be solved in some domain R with a boundary B subject to the initial 
conditions 

u = u o  and w = w o  at t = O  (3a, b) 

and the boundary conditions 

U = U ~  and o = ( V X  u)lB (4a, b) 

on the boundary B of R. 

2.2. Solution procedure 

The task is to develop a second-order spatially and at least first-order temporally accurate numerical 
algorithm for the system described in equations (1H4). To seek the solution at t = I; we divide the 
time from to to T into subintervals. Within any fixed time interval a two-stage explicit Runge-Kutta 
method is constructed to advance the solution from the start to the end of that time interval. Let the 
superscript I indicate the value at the end of the first stage. The solution procedure may be summarized 
in the following steps. 

(i) Integrate the vorticity transport equation (1) in time to constitute the first stage of the Runge- 
Kutta method, 

so that the vorticity w' in the interior of the domain R is obtained from 

(ii) Solve the Poisson equation 

(6 )  VZG' = -v x w I 

under the boundary condition (4a). 
The intermediate solution 8' may not be solenoidal, since w' is determined using un. However, the 

Helmholtz theorem allows us to project 8' onto a solenoidal component and an irrotational component. 
Details of the projection procedure will be given in Section 3.2. We call this solenoidal component u'. 

(iii) Use equation (4b) to obtain the vorticity boundary condition for the second stage, 

w; = (V x u'). (7) 

The normal component of wk is known exactly if the velocity boundary condition is given as 
equation (4a), but the tangential component is not known a priori. For the computation of viscous 
terms in the second stage the vorticity on the boundary is taken directly as wb. This might result in 
O(At) error on the boundary. 
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(iv) Construct the second stage of the Runge-Kutta method, 

V x (u' x 
Re 

to obtain the vorticity at the end of time step n or at the beginning of time step n+ 1 as 

u"++ = 0" +".=(K+ + K-). (8b) 
(v) Again solve the Poisson equation 

v23+' = -v "n+l (9) 
under the boundary condition (4a) and then project the computed velocity field onto a solenoidal 
component u"+'. We take this solenoidal component u"" as the velocity solution at the new time 
level. 

(vi) Use the vorticity definition (4b) to obtain the vorticity on the boundary B for the new time 
level. Go back to (i) to begin the computation for the next time step. 

The solution pair (0, u) satisfies the vorticity-velocity formulation of the N-S equations (1)-(4), 
but with a little time lagging in the vorticity boundary condition. Actually, only the tangential 
component of OB is determined in terms of uB and u in the interior, which requires an approximation 
to the normal derivative of the velocity on the boundary B. Since the tangential component of oB is 
proportional to the shear stress, care must be taken in discretizing the vorticity boundary condition 
(4b). In addition, the solenoidality of the velocity and vorticity fields requires appropriate location of 
the variables on the grid, which will be discussed in the next section. 

3. DISCRETIZED SCHEME 

3. I .  Spatial discretization 

Since the problem to be solved involves flow in a spherical gap, spherical co-ordinates are suitable 
for the computation. Let r be the radial co-ordinate and 0 be the circumferential angle. Because of 
axisymmetry, we consider only the half-sphere shown in Figure 1. The domain R is partitioned into 
quadrilateral cells according to co-ordinate lines. The location of the staggered variables is shown in 
Figure 2,  which is a 2D projection of the 3D version.' Non-staggered variable location is also used for 
comparison with the staggered case. 

The first- and second-order spatial derivatives are replaced with second-order central differences. 
The location of variables on grids is an important factor, at least in determining how well the continuity 
equation is satisfied in a discrete sense. In the present e u  formulation, mass conservation requires the 
total flux to be zero across the cell sides. When the velocity components are located at the cell mid- 
sides, mass conservation can be satisfied to round-off error level. The conservative form of the vorticity 
transport equation will play an essential role in the satisfaction of mean vorticity conservation.' This 
form also helps in satisfying the solenoidality of the vorticity field if the vorticity components are 
staggered as shown in Figure 2.  Furthermore, the staggered variable location guarantees the two-point 
formula an accuracy of   AX/^)^ in the discretization of the first derivative instead of (AY)* that can be 
obtained using a non-staggered variable location. This is particularly clear in the computation of the 
right-hand side of equation (2). 

The vorticity is obtained explicitly from the discretized forms of equations (5a), (5b), (8a) and (8b). 
The discretized Poisson equation (6)  or (9) at P,,, connects five ui variables at four neighbouring ui 
locations. On boundaries where ui-l or ui+l is exterior to the domain R it is extrapolated from the 
values on the boundary and at the first interior location, e.g. ui- = 2uB - ui. This treatment results in 
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Figure I. Spherical co-ordinates and grid of solution domain 

faster convergence in iterating the Poisson equation, as the numerical test indicated. The discretized 
Poisson equation can be cast in the form 

UWui-1, j + uEui+l, j -k aSui,j-l + UNui, j+ l  + aPui,j = ri, j ,  (10) 

where uw U E ,  us, UN and up are constant coefficients related to co-ordinates and mesh sizes and 
ri j  = r(ui,,, vi,,, w ~ , ~ ,  o) is the residual of the discretized form of equation (6) or (9). The three linear 
equations are coupled, because the ri,j depend on other components to be solved. A scalar type of point 
SOR iteration method is applied for each of the three equations; vectorization of the code is obtainable 
on the i + j = const. plane. 

3.2. Divergence free correction to the velocity field 

The velocity obtained from equation (6) or (9) may not be solenoidal, though adoption of the 
staggered grid may improve the results. This is particularly true when the transition is fast. We now 
decompose the velocity ii into a solenoidal part u and an irrotational part -V$, 

i i = u - V $ ,  
in domain R. 

I U 

Figure 2. Grid cell showing staggered location of flow variables. The reference point (i, j )  is marked with a solid circle 
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A Poisson equation for the scalar $ is obtained by taking the divergence of equation (1 I), 

v2$ = -v.& in Q, (12) 
which is to be solved with the Neumann boundary condition 

n-u - n 4  = O 

or 

-- a$ - 0  on B. 
an 

This condition comes from the fact that the normal component of ii on the boundary exactly equals 
the specified value if the velocity boundary condition is given as equation (4a). To maintain second- 
order accuracy, the variable $ is located at the centre of each cell. The discretized Poisson equation is 
solved using a direct matrix solver, but it can also be solved by other methods such as line SOR. Once 
$ has been obtained, the solenoidal velocity is obtained as 

a$ u = i i + - ,  
ar 

,. a4 
rae 

v=v+- .  

3.3, Treatment of vorticity boundary condition 

In describing the formulation of the N-S equations in Section 2.1, we assumed that the velocity was 
specified on the boundary, then the vorticity was computed by definition (4b). According to the 
vorticity definition, the normal derivatives of velocity need to be approximated. Usually N-point one- 
sided differencing is used to evaluate auilan on B. Generally speaking, the velocity might not be 
specified on all boundary segments. However, equation (4b) does represent the condition on each 
boundary segment. Because the most difficult yet most important portion is on the body surface, 
proper treatment should be applied in approximating hiIan on the wall. Other boundary segments 
seem not so critical as the solid body surface. 

There is a contradiction in approximating auilan on the non-staggered grid. On one hand, hiIan can 
be evaluated by three-point one-sided differencing in order to obtain a second-order-accurate vorticity 
boundary condition, but this often results in numerical instability as shown by Roache.'' In our 
spherical Couette flow problem &/an is responsible for the numerical instability, since the azimuthal 
flow (w-component) is dominant. On the other hand, a two-point formula can be numerically stable, 
but it causes the boundary condition for the vorticity to be less accurate. A remedy might be to solve 
equations (1) and (2) iteratively together with a second-order-accurate three-point formula for the 
vorticity boundary condition, but a large number of iterations might be needed, making the method 
impractical for simulating unsteady flow. 

On the staggered grid the vorticity components are 
1 a(sin Ow) 

re ae B' 
01 =- 
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The normal derivative alar is replaced by the two-point one-sided difference between the wall and the 
first velocity location at distance 4Ar from the wall. In spite of being first-order-accurate, the two-point 
formula on the staggered grid has half the truncation error of that on the non-staggered grid. Moreover, 
the better satisfaction of the solenoidality constraint of the velocity and vorticity fields on the staggered 
grid may help to improve the accuracy in evaluating the vorticity boundary condition on the body 
surface. 

4. RESULTS OF TEST PROBLEM 

The flow between two concentric rotating spheres in which the outer sphere is held stationary and 
the inner one is rotated at an angular velocity 0 1  has been widely This flow is well known 
for its multiple steady, stable solutions at Reynolds numbers greater than a critical value. We chose this 
flow as a test case because the balance of torques acting on the inner and outer spheres in a stable 
steady state provides an important criterion for validation and comparison purposes. The transition 
from zero-vortex to two-vortex Bow at Re, = RIR:/v = 800 for a gap ratio 0.1 8 is unique if the 
Reynolds number suddenly increases from zero to 800. 

The computation is started from the Stokes flow 

4. I .  Comparison of results between staggered and non-staggered grids 

The influence of the variable location on the grid has been studied first to determine which grid is 
better. A typical 21 (r)  x 129 (6) grid is selected. Using the time step At = 0.025, both computations 
reach an asymptotic steady state after about 5000 time steps. The vorticity distributions on the inner 
(r = (R1 + R2)/2) and outer spheres are compared in Figures 3(at3(c). The difference is obvious on the 
spheres but trivial in the interior region. The torque coefficients and norms of divergence of velocity 
and vorticity are listed in Table I. The torque coefficient is defined as 

Surprisingly, the torques acting on the inner and outer spheres as computed using the non-staggered 
grid are in significant imbalance; however, this discrepancy may be understood by considering the 
difference between Figures 3(a) and 3(c) and the poor satisfaction of the solenoidality constraint of the 
velocity and vorticity fields on the non-staggered grid seen in Table I. In contrast, the staggered grid 
ensures good torque balance at steady state. This comparison suggests that the staggered grid is 
preferable. In the following computations only the staggered grid is used. 

4.2. Mesh sensitivity 

To validate the present (~t-u method with the staggered variable location, a mesh dependence study 
has been conducted. Three grids are adopted. The results of the mesh sensitivity analysis are presented 
in Table I1 in terms of torque coefficient, first-vortex size near the equator, maximum axial velocity and 
maximum circumferential vorticity on the inner sphere at steady state. 

We see that the torque is greater than 0.216 and the first-vortex size is above 0.9, which are the 
experimental results,' but as the grid is refined, the values improve. 
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Figure 3. Comparison of steady state distributions of vorticity component 02 along circumferential direction, grid 21 x 129, 
At = 0.025; 6 = 90" corresponds to the equator 

Table I. Torques and average norms of divergence of velocity and vorticity 

Variable location 71 72 II -7.i II II v.u I1 II v . w  II 

Non-staggered 0.189 0.285 8 . 8  x lop3 1 .34  x 2.09 
Staggered 0.2209 0.2211 8 . 0  x 1 .56 x 1 '44  x 

Note: 11 V . i  11 is the value before projection. 

Table 11. Mesh dependence results 

Grid 7 First-vortex size u, 10=n/2 W 2 - l r = ~ ,  

21 x65 0.223 0.912 0.073 13.12 
21 x 129 0.221 0.918 0.086 12.25 
31 x 129 0.220 0.906 0.084 12.82 
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4.3. Zero-vortex-two-vortex (0 -+ 2) transition and comparison with other numerical results 

One important question is how temporally accurate the present method actually is. In Reference 10 a 
high-resolution simulation of the 0 .+ 2 transition has been conducted using a pseudospectral method. 
The initial state is that of Stokes flow and Re increases suddenly from zero to 800. The authors used the 
time step At = 2nI70. We use At = 0.025 in our computation owing to the limitation of numerical 

Figure 4(aHc). Meridional flow during 0 + 2 transition at Re = 800 and u = 0.18. The tick marks on the outer radius have 
circumferential spacings equal to the gap width and on the inner radius have angular spacings A9 = d64. Top: results from 

pseudospectral method." Bottom: present computation 
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Figure 4(dHf). Meridional flow during 0 + 2 transition at Re = 800 and u = 0.18. The tick marks on the outer radius have 
circumferential spacings equal to the gap width and on the inner radius have angular spacings A6 = d64. Top: results from 

pseudospectral method." Bottom: present computation 

instability. Figure 4 shows a comparison of the meridional flow, The contours are of constant 
streamfunction $r sin 8, where $ is related to the meridional velocity component by 

l a  
r sin 8 a0 

u, = __ -($ sin e), 

i a  
ue = - - - (r$). 

r ar 
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We see that the time-evolving process computed by our method corresponds approximately to that 
of Reference 10. This demonstrates that the temporal accuracy of the present explicit scheme may be 
similar to that of pseudospectral methods. However, hrther modifications to achieve higher-order 
spatial and temporal accuracy have to be made before the present method can be applied to the 
simulation of high-Re flow. 

5 .  CONCLUSIONS 

The purpose of this paper has been to present a study of a numerical method for the solution of the 
unsteady N-S equations. The proposed method for solving the a-u formulation is at least first-order 
temporally accurate and second-order spatially accurate and is efficient in the computation of 
moderate-Re flow owing to the adoption of an explicit two-stage Runge-Kutta method to advance the 
vorticity transport equations. Some important aspects of staggered location of the variables, 
divergence-free correction to the velocity field by a scalar potential and proper approximation of the 
vorticity boundary condition are examined. In the example of spherical Couette flow, results have 
demonstrated that the staggered location of velocity and vorticity components satisfies better the 
solenoidality of the velocity and vorticity fields and that the temporal accuracy of the present method is 
comparable with that of pseudospectral methods. 
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